Local convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems

نویسندگان

  • Daniel B. Szyld
  • Fei Xue
چکیده

We study the local convergence of several inexact numerical algorithms closely related to Newton’s method for the solution of a simple eigenpair of the general nonlinear eigenvalue problem T (λ)v = 0. We investigate inverse iteration, Rayleigh quotient iteration, residual inverse iteration, and the single-vector Jacobi-Davidson method, analyzing the impact of the tolerances chosen for the approximate solution of the linear systems arising in these algorithms on the order of the local convergence rates. We show that the inexact algorithms can achieve the same order of convergence as the exact methods if appropriate sequences of tolerances are applied to the inner solves. We discuss the connections and emphasize the differences between the standard inexact Newton’s method and these inexact algorithms. When the local symmetry of T (λ) is present, the use of a nonlinear Rayleigh functional is shown to be fundamental in achieving higher order of convergence rates. The convergence results are illustrated by numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact Newton Methods Applied to Under – Determined Systems by Joseph P . Simonis A Dissertation

Consider an under-determined system of nonlinear equations F (x) = 0, F : IR → IR, where F is continuously differentiable and m > n. This system appears in a variety of applications, including parameter–dependent systems, dynamical systems with periodic solutions, and nonlinear eigenvalue problems. Robust, efficient numerical methods are often required for the solution of this system. Newton’s ...

متن کامل

A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems

In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.

متن کامل

Modify the linear search formula in the BFGS method to achieve global convergence.

<span style="color: #333333; font-family: Calibri, sans-serif; font-size: 13.3333px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: justify; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-dec...

متن کامل

Local convergence of Newton-like methods for degenerate eigenvalues of nonlinear eigenproblems. I. Classical algorithms

We study the local convergence rates of several most widely used single-vector Newton-like methods for the solution of a degenerate eigenvalue of nonlinear algebraic eigenvalue problems of the form T (λ)v = 0. This problem has not been completely understood, since the Jacobian associated with Newton’s method is singular at the desired eigenpair, and the standard convergence theory is not applic...

متن کامل

Inexact Newton-type Optimization with Iterated

This paper presents and analyzes an Inexact Newton-type optimization method 4 based on Iterated Sensitivities (INIS). A particular class of Nonlinear Programming (NLP) problems 5 is considered, where a subset of the variables is defined by nonlinear equality constraints. The pro6 posed algorithm considers any problem-specific approximation for the Jacobian of these constraints. 7 Unlike other i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2013